Proposed BDCP Delta Inflow/Outflow Planning Principles

PRE/NGO Scenario Development April 1, 2009

Objectives

- Explore a range of inflow/outflow objectives for consideration in BDCP planning
- Consider improved, simplified methods for providing Delta inflows/outflows that <u>balance</u> competing needs

Delta Outflow Complexities

- Changes to Delta outflow requirements affect the total water available for competing purposes – tradeoffs necessarily occur
 - Upstream environmental (i.e. coldwater pool)
 - Delta environmental (i.e. open water habitat, X2)
 - Water supply needs (i.e. exports)
- Spring outflow requirements occur at times of poor forecasting capability
- Only a fraction of the Delta outflow is manageable by the SWP and CVP facilities
- Outflow satisfaction can be achieved through changes in reservoir releases or exports
- Sharing of requirements between the SWP and CVP are based on previous in-basin uses
- Individual projects and reservoirs have varying degrees of direct, upstream obligations (flow, temperature, delivery requirements)

Development of Inflow/Outflow Planning Principles

- Inflow/Outflow targets based on best-available science
- Work with water volumes manageable by SWP and CVP in the Sacramento Valley
- Maintain synchrony with natural flows
- Protect upstream conditions
- Maintain X2 within region best-suited for estuarine function and primary productivity
- Utilize best available forecasts and risk principles for setting targets

1. Based on Best-Available Science

- Summary of best-available science (inprogress)
 - Inflows/Outflows provide environmental flow cues for salmonid migration
 - Synchrony of hydrology between Sacramento River and tributaries is important for fish migration and transport
 - Seasonal and inter-annual variation in outflow is important in determining the low salinity zone location to support estuarine trophic processes and habitat for covered species

PRELIMIN 26. WOTK WITHIN Water Volumes Manageable by SWP and CVP in

Sacramonto Valloy

Comparison of Delta Outflow under Different Levels of Impairment Sum Feb-Jun (1956-2003)

3a. Maintain Synchrony with Natural Hydrology

3b. Maintain Synchrony with Natural Hydrology

4. Protect Upstream Conditions

Shasta End of April Storage

ED_000733_DD_NSF_00008898-00010

6. Utilize Best-Available Forecasts and Risk Principles for Target Setting

- Utilize best-available forecasts
 - Bulletin 120 Seasonal forecasts
 - NWS CNRFC Monthly forecasts
 - AHPS and ESP (5-day to 14day ensemble forecasts)
 - Use risk levels consistent with water allocation and other regulatory standards
 - 90% exceedance levels for Jan-May
 - 50% exceedance levels for Jun

Source: NOAA, http://www.cnrfc.noaa.gov

Potential Inflow/Outflow Scenarios

Outflows

- Outflow as function of <u>unimpaired</u> Sac Valley runoff <u>and</u> <u>impaired</u> San Joaquin Valley runoff
- 2. TBI/NGO X2 proposal X2 as function of 8 River Index
- 3. D-1641 X2 standard <u>without</u> Roe Island triggering

Inflows

- 4. Sac R Inflow as function of unimpaired Sac Valley runoff
- 5. Reservoir bypass flows as function of inflows

Representation of NGO X2

X2 Relationship to Eight River Index - (JUNE FORECAST) Historic 1956-2007 Data (CDEC and DAYFLOW)

Outflow/Inflow Targets Based on **Unimpaired Flows**

	Delta Outflow Options Set minimum flows at select locations based on a fraction of forecasted unimpaired flow at each location Months													w
TROL			Jan	Feb	Mar	Apr	May		Jul	Aug	Sep	Oct	Nov	þed
	(eswick		0	0	0	0	0	0	0	0		0	0	0
Settings oclimate	Thermalito		0	0	0	0	0	0	0	0	0	0	0	0
	limbus		0	0	0	0	0	0	0	0	0	0	0	0
	/erona		0.6	0.6	0.6	0.5	0	0	0	0	0	0	0	0
ons	reeport	V	0	0.5	0.5	0.5	0.5	0.5	0	0	0	0	0	0
	Delta Dutflow*		0	0.5	0.5	0.5	0.5	0.5	0	0	0	0	0	0
rations	Delta	flow i	o set to	0.5 a perce	0.5	0.5 ecasted	0.5 unimpai	0.5 red SAC	0 R flows	0	0	0	0]

Approach for Evaluating Varying Delta Outflow/Inflow Objectives

- Incremental approach to better understand system capabilities and impacts
- 3 legs to the stool: (1) Delta flows, (2) upstream coldwater storage, (3) water supply
- Pass 1
 - Demonstrate operation of upstream reservoirs under the assumptions that releases would <u>only</u> occur for upstream demands and requirements, Delta requirements, and exports only for Water Rights and Exchange contractors.
 - Not a realistic scenario, but would illustrate the capability of the system to satisfy the given Delta flow objective.

Pass 2

- Adds realism by including the delivery allocation decisions that would show the combined effect of operation of the projects for both water supply and environmental purposes.
- Trade-offs between these deliveries, storage, and outflow can be ascertained by this simulation.

Key Modeling Metrics

- Export reliability
- Outflow
- X2
- Old and Middle River flow
- Sacramento River d/s of north Delta diversion
- Upstream storage (September and April)

PRELIMINARY DRAFT—NOT FOR DISTRIBUTION Export Reliability (Example)

X2 Changes (Example only)

Simulated X2 Position

Reference (DRERIP Scenario 1)

Simulated X2 Position

Outflow Scenario 1

Simulated X2 Position

Outflow Scenario 2

Upstream Storage (Example

Insert Feb-Jun X2 Plot

exceedance Probability (end of April

